$$
\begin{aligned}
& \text { 11) } \int \frac{x^{2}-4}{x} d x \\
& \int\left(x-\frac{4}{x}\right) d x \\
& \frac{1}{2} x^{2}-4 \ln |x|+c \\
& \frac{1}{2} x^{2}-\ln x^{4}+c
\end{aligned}
$$

$$
\text { 13) } \begin{aligned}
& \frac{1}{3} \int^{3} \frac{\left(x^{2}+2 x+3\right)}{x^{3}+3 x^{2}+9 x} d x \\
& u=x^{3}+3 x^{2}+9 x \\
& d u=\left(3 x^{2}+6 x+9\right) d x \\
& \frac{1}{3} \int \frac{1}{4} d u=\frac{1}{3} \ln \left|x^{3}+3 x^{2}+9 x\right|+c
\end{aligned}
$$

21)

$$
\begin{aligned}
& \int \frac{(\ln x)^{2}}{x} d x \\
& u=\ln x \\
& d u=\frac{1}{x} d x \\
& \int u^{2} d u \frac{1}{3}(\ln x)^{3}+c
\end{aligned}
$$

27) $\int \frac{1 \sqrt{2 x}}{(1+\sqrt{2 x}) \sqrt[3 x]{2 x}} d x=\begin{aligned} & u-1=\sqrt{2 x} \\ & u=1+\sqrt{2 x} \\ & \sqrt{2 x}\end{aligned} d x$ $\int \frac{u-1}{u} d u$

$$
\begin{aligned}
\int\left(1-\frac{1}{u}\right) d u= & u-\ln |u|+c \\
& (1+\sqrt{2 x})-\ln |1+\sqrt{2 x}|+C
\end{aligned}
$$

$$
\begin{aligned}
& 2 \int\left(u+6+\frac{9}{u}\right) d u=2\left[\frac{1}{2} u^{2}+6 u+9 \ln |u|\right]+C \\
& =(\sqrt{x}-3)^{2}+12(\sqrt{x}-3)+18 \ln |\sqrt{x}-3|+C
\end{aligned}
$$

